Biomechanical Properties of Insect Wings: The Stress Stiffening Effects on the Asymmetric Bending of the Allomyrina dichotoma Beetle's Hind Wing

نویسندگان

  • Ngoc San Ha
  • Quang Tri Truong
  • Nam Seo Goo
  • Hoon Cheol Park
چکیده

Although the asymmetry in the upward and downward bending of insect wings is well known, the structural origin of this asymmetry is not yet clearly understood. Some researchers have suggested that based on experimental results, the bending asymmetry of insect wings appears to be a consequence of the camber inherent in the wings. Although an experimental approach can reveal this phenomenon, another method is required to reveal the underlying theory behind the experimental results. The finite element method (FEM) is a powerful tool for evaluating experimental measurements and is useful for studying the bending asymmetry of insect wings. Therefore, in this study, the asymmetric bending of the Allomyrina dichotoma beetle's hind wing was investigated through FEM analyses rather than through an experimental approach. The results demonstrated that both the stressed stiffening of the membrane and the camber of the wing affect the bending asymmetry of insect wings. In particular, the chordwise camber increased the rigidity of the wing when a load was applied to the ventral side, while the spanwise camber increased the rigidity of the wing when a load was applied to the dorsal side. These results provide an appropriate explanation of the mechanical behavior of cambered insect wings, including the bending asymmetry behavior, and suggest an appropriate approach for analyzing the structural behavior of insect wings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loading Estimation of Flapping Wings under Aeroelastic Effect Using Finite Element Method

The aim of this paper is to provide an aeroelastic computational tool which determines the induced wing loads during flapping flight. For this purpose, a Finite Element (FE) code based on a four-node plate bending element formulation is developed to simulate the aeroelastic behavior of flapping wings in low incompressible flow. A quasi-steady aerodynamic model is incorporated into the aeroelast...

متن کامل

Experimental Investigation of Asymmetry of Vortex Flow Over Single Delta Wings

It is generally believed that, on slender delta wings, there is a critical state at which strong asymmetric vortices are found along the leading edge on the lee-side of the delta wing. These asymmetric vortices can lead to high lateral forces even when slender delta wing is at the zero angle of yaw. Some experimental studies reported recently, cast considerable doubt as to the validity of the a...

متن کامل

NUMERICAL ANALYSIS OF MAVs FLAPPING WINGS IN UNSTEADY CONDITIONS

Today, Flapping Micro Aerial Vehicles (MAV) are used in many different applications. Reynolds Number for this kind of aerial vehicle is about 104 ~ 105 which shows dominancy of inertial effects in comparison of viscous effects in flow field except adjacent of the solid boundaries. Due to periodic flapping stroke, fluid flow is unsteady. In addition, these creatures have some complexities in kin...

متن کامل

Veins Improve Fracture Toughness of Insect Wings

During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characteri...

متن کامل

Determination of Dynamic Instability Speed of an Unsweep Wing in Subsonic Flow Including Compressibility Effects

In this paper, the equation of motion of an elastic 2 DoF wing model has been derived using Lagranges method. The aerodynamic loads on the wing were calculated via the Strip-Theory and the effect of compressibility was included. Wing deflections due to bending and twist motions were determined using the Assume-Mode method. The aeroelastic equations were solved numerically using the V-g method. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013